|
Species distribution is the manner in which a biological taxon is spatially arranged. Species distribution is not to be confused with dispersal, which is the movement of individuals away from their area of origin or from centers of high population density. A similar concept is the species range. A species range is often represented with a species range map. Biogeographers try to understand the factors determining a species' distribution. The pattern of distribution is not permanent for each species. Distribution patterns can change seasonally, in response to the availability of resources, and also depending on the scale at which they are viewed. Dispersion usually takes place at the time of reproduction. Populations within a species are translocated through many methods, including dispersal by people, wind, water and animals. Humans are one of the largest distributors due to the current trends in globalization and the expanse of the transportation industry. For example, large tankers often fill their ballasts with water at one port and empty them in another, causing a wider distribution of aquatic species. Biogeography is the study of the distribution of biodiversity over space and time. It is very useful in understanding species distribution through factors such as speciation, extinction, continental drift, glaciation, variation of sea levels, river capture and available resources. This branch of study not only gives a description of the species distribution, but also a geographical explanation for the distribution of particular species. The traditional biogeographic regions were first modeled by Alfred Wallace in ''The Geographical Distribution of Animals'' (1876). These were based on the work of Sclater's terrestrial biogeographic regions. Wallace's system was based on both birds and vertebrates, including non-flying mammals, which better reflect the natural divisions of the Earth due to their limited dispersal abilities. ==Clumped distribution== Clumped distribution is the most common type of dispersion found in nature. In clumped distribution, the distance between neighboring individuals is minimized. This type of distribution is found in environments that are characterized by patchy resources. Animals need certain resources to survive, and when these resources become rare during certain parts of the year animals tend to “clump” together around these crucial resources. Individuals might be clustered together in an area due to social factors such as selfish herds and family groups. Organisms that usually serve as prey form clumped distributions in areas where they can hide and detect predators easily. Other causes of clumped distributions are the inability of offspring to independently move from their habitat. This is seen in juvenile animals that are immobile and strongly dependent upon parental care. For example, the bald eagle's nest of eaglets exhibits a clumped species distribution because all the offspring are in a small subset of a survey area before they learn to fly. Clumped distribution can be beneficial to the individuals in that group. However, in some herbivore cases, such as cows and wildebeests, the vegetation around them can suffer, especially if animals target one plant in particular. Clumped distribution in species acts as a mechanism against predation as well as an efficient mechanism to trap or corner prey. African wild dogs, ''Lycaon pictus'', use the technique of communal hunting to increase their success rate at catching prey. Studies have shown that larger packs of African wild dogs tend to have a greater number of successful kills. A prime example of clumped distribution due to patchy resources is the wildlife in Africa during the dry season; lions, hyenas, giraffes, elephants, gazelles, and many more animals are clumped by small water sources that are present in the severe dry season. It has also been observed that extinct and threatened species are more likely to be clumped in their distribution on a phylogeny. The reasoning behind this is that they share traits that increase vulnerability to extinction because related taxa are often located within the same broad geographical or habitat types where human-induced threats are concentrated. Using recently developed complete phylogenies for mammalian carnivores and primates it has been shown that the majority of instances threatened species are far from randomly distributed among taxa and phylogenetic clades and display clumped distribution. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「species distribution」の詳細全文を読む スポンサード リンク
|